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OUTLINE

• Background – the incoherent scattering cross section of H
• Neutrons and QENS
• Experiment Design
• Connection to Molecular Dynamics Simulations
• The Elastic Incoherent Structure Factor (EISF)
• The Role of Instrumentation
• Restricted Diffusion Example – Tethered Molecules
• References and Summary
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Incoherent and Coherent Scattering
• Origin – incoherent scattering arises when there is a random variability in the 

scattering lengths of atoms in your sample – can arise from the presence of 
different isotopes or from isotopes with non-zero nuclear spin and the relative 
orientation of nuclear spin with nuclear spin

• Coherent scattering – gives information on spatial correlations and collective 
motion.
– Elastic: Where are the atoms? What are the shape of objects? 
– Inelastic: What is the excitation spectrum in crystalline materials – e.g. phonons? 

• Incoherent scattering – gives information on single-particles.
– Elastic: Debye-Waller factor, # H-atoms in sample. 
– Inelastic:  diffusive dynamics, diffusion coefficients.

• Good basic discussion: 
– “Methods of x-ray and neutron scattering in polymer science”, R.-J. Roe, Oxford 

University Press. (available)
– “Theory of Thermal Neutron Scattering”, W. Marshall and S. W. Lovesey, Oxford 

University Press (1971). (out of print)
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Neutrons and the Large Incoherent 
Cross-section of H
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• Isotopic sensitivity – random nuclear cross-section with element and isotope
– H-D contrast, light element sensitivity in presence of heavy elements
– H large incoherent cross-section – self-correlation function

• Magnetic moment
• Wavelength and energy match excitations in condensed matter (Geometry 

and time): Where are the atoms and how do they move?
• neutrons λ ~ Å; E ~ meV; spectroscopy – no selection rules
• x-rays λ ~ Å; E ~ keV
• light λ ~ 1000 Å; E ~ eV

• Small absorption cross section – can penetrate sample cells



5 Managed by UT-Battelle
for the U.S. Department of Energy National x-ray/neutron school June 2010

Quasi-elastic Neutron Scattering (Why 
Should I Care?)

• Applicable to wide range of science areas
– Biology – dynamic transition in proteins, hydration water
– Chemistry – complex fluids, ionic liquids, porous media, surface 

interactions, water at interfaces, clays
– Materials science – hydrogen storage, fuel cells, polymers

• Probes true “diffusive” motions

• Range of analytic function models
– Useful for systematic comparisons

• Close ties to theory – particularly 
Molecular Dynamics simulations

• Complementary 
– Light spectroscopy, NMR, dielectric 

relaxation

• Unique: Answers Questions you 
cannot address in other ways.
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A Neutron Experiment

Measure scattered 
neutrons as a function of 
Q and ω −> S(Q,ω).

ω = 0 −> elastic

ω ≠ 0 −> inelastic

ω near 0 −> quasielastic
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Quasi-Elastic Neutron 
Scattering

• Neutron exchanges small amount of energy 
with atoms in the sample

• Harmonic motions look like flat background
• Vibrations are often treated as Inelastic 

Debye-Waller Factor
• Maximum of intensity is always at ω = 0
• Low-Q – typically less than 5 Å-1
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Experiment Design

• σ is the microscopic cross section (bn/atom) 10-24 cm2

• n is the number density (atom/cm3)
• Σ is the macroscopic cross-section (cm-1)

The transmission, T, depends on sample thickness, t, as:

• Good rule of thumb is T = 0.9

σn=Σ

( )tT Σ−= exp

5 – 15 mmole H-atoms for 10 cm2 beam 
(BaSiS, HFBS, CNCS, DCS)
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An Example – Water
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QENS Spectra
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Incoherent Intermediate Scattering 
Function, S(Q,ω), and Molecular 
Dynamics Simulations
• Intermediate Scattering Function

– time dependent correlation function
– incoherent scattering –> no pair correlations, self-correlation function
– calculable from atomic coordinates in a Molecular Dynamics Simulation

– Sinc(Q,ω) – the Fourier transform of Iinc(Q,t)
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QENS and Molecular Dynamics 
Simulations

• Same atomic coordinates used in classical MD are all that is needed 
to calculate Iinc(Q,t)

1,3 diphenylpropane 
tethered to the pore 
surface of MCM-41
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The Elastic Incoherent Structure Factor 
(EISF)
• A particle (H-atom) moves out of 

volume defined by 2π/Q in a time 
shorter than set by the reciprocal of 
the instrument sensitivity, dω(meV) 
– gives rise to quasielastic 
broadening. 

• The EISF is essentially the 
probability that a particle can be 
found in the same volume of space 
at some subsequent time.

• The ratio of the Elastic Intensity to 
the total Intensity 2π/Q
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QENS and Neutron Scattering 
Instruments

• Probe Diffusive Motions
– Length scales set by Q, 0.1 Å-1 < Q < 3.7 Å-1, 60 Å > d > 1.7 Å.
– Time scales set by the width of instrument energy resolution, typically at least 0.1 meV (fwhm)  

but higher resolution -> longer times/slower motion

• Energy transfers ~ ± 2 meV (or less)
– High resolution requirements emphasizes use of cold neutrons (but long λ limits Q)
– Incident neutron wavelengths typically 4 Å to 12 Å (5.1 meV to 0.6 meV)

• Why a variety of instruments? (Resolutions vary from 1 µeV to100 µeV)
– Terms in the resolution add in quadrature – typically primary spectrometer (before sample), 

secondary spectrometer (after the sample)
– Improvement in each resolution term cost linearly in neutron flux (ideally)
– Optimized instrument has primary and secondary spectrometer contributions approximately 

equal
– Factor of 2 gain in resolution costs at a minimum a factor of 4 in flux
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Role of Instrumentation
• Currently about 25 neutron scattering instruments in the world useful for QNS 

(approximately 5 in the U. S.)
• U.S. instruments – Opportunity is Good- Competition is Strong

– NIST Center for Neutron Research
• Disc Chopper Spectrometer
• High Flux Backscattering Spectrometer
• Neutron Spin Echo

– Lujan – Los Alamos National Laboratory
• Rebuild of QENS instrument from IPNS

– Spallation Neutron Source
• BaSiS – near backscattering spectrometer (3 µeV)
• Cold Neutron Chopper Spectrometer (CNCS) (10 – 100 µeV)
• Neutron Spin Echo (t to 1-2 µsec)

• Trade-offs
– Resolution/count rate
– Flexibility
– Dynamic range
– Neutron λ vs Q

• large λ −> high resolution -> long times/slow motions
• large λ −> limited Q-range, limited length scales
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Small Molecule Diffusion

The Neutron Spectrometer Landscape

Cold Neutron Chopper

Neutron Spin Echo

Backscattering
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BaSiS - SNS Near Backscattering
Spectrometer
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Restricted Diffusion – Tethered Molecules

Pore Radius 
(nm)

Coverage 
(molecules/nm2)

1.63 0.85 (saturation)
2.12 1.04 (saturation)

2.96
0.60
0.75

1.61 (saturation)
MCM-41 (2.9 nm pore diameter) 
high DPP coverage

Samples – typical 0.7 g 

240 K < T < 340 K

Simple Fit – Lorentzian + δ
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What if I don’t have Molecular 
Dynamics or other Theory? 
Simple Analytical Model – e.g. 
Diffusion in a Sphere

Volino and Dianoux, Mol. Phys. 41, 271-279 (1980).
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Extend to a Sum over Spheres of 
Varying Size (15 H-atoms)
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Fit to data (HFBS – NCNR) 29.6 Å 
diameter pore, 320 K, Q = 1 Å-1

-1
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EISF – 29.6 Å radius DPP sample, 
saturation

Non-zero asymptote 
implies immobile H-
atoms (on the time 
scale of this 
instrument)

fm

1-fm

Curvature determines Rmax
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29.6 Å radius DPP sample, saturation
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Lorentzian Γ(Q)

Non-zero intercept
Implies 
restricted/confined 
diffusion
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DPP – 29.6 Å diameter pores – 370 K 
(BaSiS - SNS) – Beyond the EISF – Fitting 
the Model to the Full Data Set
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Detailed Fits
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Thermophilic Rubredoxin – a small 
protein

• Pyrococcus furiosus - a sulfur-
metabolizing bacteria found in super-
heated deep sea vents

• RdPf – small iron-sulfur protein
– 53 amino acids
– Stable for days in 

boiling water
– Fe tetrahedrally 

coordinated to the 
sulfurs of four 
Cysteines

– Electron transfer protein
– Structure studied by

both x-ray and neutron

Lawrence Livermore National Laboratory –
Hydrogen Fuel production 

Fe
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Time Scales

RuBisCO

10-15 s 10-12 10-9 10-6 10-3 100 s

Catalase
Carbonic 
anhydrase

Acetylcholinesterase
Dihydrofolate reductaseCyclophilin A

Enzyme function
Chymotrypsin

Protein dynamical events

10-15 s 10-12 10-9 10-6 10-3 100 s

kBT/h

Rotation of side-chains

Elastic vibration of globular region Protein breathing motionsBond 
vibration

H/D exchange

10-15 s 10-12 10-9 10-6 10-3 100 s

Experimental techniques
NMR: R1, R2 and NOE

Neutron scattering NMR: residual dipolar coupling

boson peak

diffusive dynamics
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QENS and MD

2RF0

F1

Dynamic Transition T ≈ 220 K
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Rubredoxin and water (hydration study 
on Basis (166 data sets in 4 days)

h-RdPf + D2O: h=0.2
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Diffusive Motions

• Protein exhibits diffusive motions below dynamic transition T
• Both Water and Protein exhibit enhanced dynamics at dynamic transition T
• At high-hydration, 0.4 gm water/gm protein, water dynamics strongly decouples from 

protein time and length scales by about 270 K
• More water – more protein dynamics
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Reference Materials
- 1

• Reference Books
– Quasielastic Neutron Scattering, M. Bee (Bristol, Adam Hilger, 1988).
– Methods of X-Ray and Neutron Scattering in Polymer Science,    R. 

–J. Roe (New York, Oxford University Press, 2000).
– Quasielastic Neutron Scattering and Solid State Diffusion, R. 

Hempelmann (2000).
– Quasielastic Neutron Scattering for the Investigation of Diffusive 

Motions in Solids and Liquids, Springer Tracts in Modern Physics, 
T. Springer (Berlin, Springer 1972).
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Reference Materials - 2
• Classic Papers

– L. Van Hove
• Phys. Rev. 95, 249 (1954)
• Phys. Rev. 95, 1374 (1954)

– V. F. Sears
• Canadian J. Phys. 44, 867 (1966)
• Canadian J. Phys. 44, 1279 (1966)
• Canadian J. Phys. 44, 1299 (1966)

– G. H. Vineyard
• Phys. Rev. 110, 999 (1958)

– S. Chandrasekhar
• “Stochastic Problems in Physics and Astronomy”, Rev. Mod. Phys. 15, 1 (1943) (not really 

QNS but great reference on diffusion models)

• Data Analysis – DAVE – NIST Center for Neutron Research
http://www.ncnr.nist.gov/dave/

http://www.ncnr.nist.gov/dave/�


34 Managed by UT-Battelle
for the U.S. Department of Energy National x-ray/neutron school June 2010

SUMMARY
• QENS is an excellent technique to measure diffusive dynamics

– Length scales/geometry accessible through Q-dependence
– Many analytic models form a framework for comparison
– Large range of time scales ( sub-picosecond < t < nanosecond (µsec for NSE)
– H-atom sensitivity 

• Instrument selection is a critical decision – the resolution must match the time scale 
of the expected motion

• World-class instrumentation is currently available in the U.S.

• Natural connection to theory (Molecular Dynamics Simulations)

• Software – DAVE at the NCNR at NIST – available from the NCNR Web site
– Need much closer coupling to theoretical modeling, especially molecular dynamics 

simulations – coherent QNS
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